4755 (FP1) Further Concepts for Advanced Mathematics

Qu	Answer	Mark	Comment
Section A			
1(i)	$\left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right)$	B1	Multiplication, or other valid method (may be implied) c.a.o.
1(ii)	$\left(\begin{array}{ll} 3 & 0 \\ 0 & 3 \end{array}\right)$	B1	
1(iii)	$\left(\begin{array}{ll} 3 & 0 \\ 0 & 3 \end{array}\right)\left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right)=\left(\begin{array}{cc} -3 & 0 \\ 0 & 3 \end{array}\right)$	M1 A1 [4]	
2		B3	Circle, B1; centre $-3+2 \mathrm{j}, \mathrm{B} 1$; radius $=2, \mathrm{~B} 1$
		B3	Line parallel to real axis, B 1 ; through (0, 2), B1; correct half line, B1
		B1 [7]	Points $-1+2 \mathrm{j}$ and $-5+2 \mathrm{j}$ indicated c.a.o.
3	$\begin{aligned} & \left(\begin{array}{cc} -1 & -1 \\ 2 & 2 \end{array}\right)\binom{x}{y}=\binom{x}{y} \\ & \Rightarrow-x-y=x, 2 x+2 y=y \\ & \Rightarrow y=-2 x \end{aligned}$	M1 M1 B1 [3]	For $\left(\begin{array}{cc}-1 & -1 \\ 2 & 2\end{array}\right)\binom{x}{y}=\binom{x}{y}$
4	$\begin{aligned} & 3 x^{3}-x^{2}+2 \equiv A(x-1)^{3}+\left(x^{3}+B x^{2}+C x+D\right) \\ & \equiv A x^{3}-3 A x^{2}+3 A x-A+x^{3}+B x^{2}+C x+D \\ & \equiv(A+1) x^{3}+(B-3 A) x^{2}+(3 A+C) x+(D-A) \\ & \Rightarrow A=2, B=5, C=-6, D=4 \end{aligned}$	M1 B4 [5]	Attempt to compare coefficients One for each correct value

5(i) 5(ii)	$\begin{aligned} & \mathbf{A B}=\left(\begin{array}{lll} 7 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 7 \end{array}\right) \\ & \mathbf{A}^{-1}=\frac{1}{7}\left(\begin{array}{ccc} -1 & 0 & 2 \\ 14 & -14 & 7 \\ -5 & 7 & -4 \end{array}\right) \end{aligned}$	B3 [3] M1 A1 [2]	Minus 1 each error to minimum of 0 Use of B c.a.o.
6	$\begin{aligned} & w=2 x \Rightarrow x=\frac{w}{2} \\ & \Rightarrow 2\left(\frac{w}{2}\right)^{3}+\left(\frac{w}{2}\right)^{2}-3\left(\frac{w}{2}\right)+1=0 \\ & \Rightarrow w^{3}+w^{2}-6 w+4=0 \end{aligned}$	B1 M1 A1 A2 [5]	Substitution. For substitution $x=2 w$ give BO but then follow through for a maximum of 3 marks Substitute into cubic Correct substitution Minus 1 for each error (including ' $=0$ ' missing), to a minimum of 0 Give full credit for integer multiple of equation
6	OR $\begin{aligned} & \alpha+\beta+\gamma=-\frac{1}{2} \\ & \alpha \beta+\alpha \gamma+\beta \gamma=-\frac{3}{2} \\ & \alpha \beta \gamma=-\frac{1}{2} \end{aligned}$ Let new roots be k, I, m then $\begin{aligned} & k+l+m=2(\alpha+\beta+\gamma)=-1=\frac{-B}{A} \\ & k l+k m+l m=4(\alpha \beta+\alpha \gamma+\beta \gamma)=-6=\frac{C}{A} \\ & k l m=8 \alpha \beta \gamma=-4=\frac{-D}{A} \\ & \Rightarrow \omega^{3}+\omega^{2}-6 \omega+4=0 \end{aligned}$	B1 M1 A1 A2 [5]	All three Attempt to use sums and products of roots of original equation to find sums and products of roots in related equation Sums and products all correct ft their coefficients; minus one for each error (including ' $=0$ ' missing), to minimum of 0 Give full credit for integer multiple of equation

Section B			
8(i)	$x=3, x=-2, y=2$	B1 B1 B1 [3]	
8(ii)	Large positive $x, y \rightarrow 2^{+}$ (e.g. consider $x=100$) Large negative $x, y \rightarrow 2^{-}$ (e.g. consider $x=-100$)	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$ [3]	Evidence of method required
	Curve Central and RH branches correct Asymptotes correct and labelled LH branch correct, with clear minimum	B1 B1 B1 [3]	
8(iv)	$\begin{aligned} & -2<x<3 \\ & x \neq 0 \end{aligned}$	$\begin{aligned} & \mathrm{B} 2 \\ & \mathrm{~B} 1 \end{aligned}$ [3]	B2 max if any inclusive inequalities appear B3 for $-2<x<0$ and $0<x<3$,

